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Abstract

A strategy for detecting control law calculation
errors in critical flight control computers during
laboratory validation testing is presented.  This paper
addresses Part I of the detection strategy which involves
the use of modeling of the aircraft control laws and the
design of Kalman filters to predict the correct control
commands.  Part II of the strategy which involves the use
of the predicted control commands to detect control
command errors is presented in the companion paper.

1.  Introduction

Verifying the integrity of control computers
operating in harsh electromagnetic environments is a key
issue in the development, certification, and operation of
control systems performing flight critical functions for
future transport aircraft.  Flight-critical systems with high
reliability specifications will be required on future
commercial aircraft for critical functions such as stability
augmentation, flutter suppression, and guidance and
control.  Since these systems are used in critical control
applications, the problem of verifying the functional
integrity of the control computer in adverse as well as
nominal operating environments becomes a key issue.  An
adverse operating environment of particular concern for
critical aircraft systems is the electromagnetic
environment (EME) caused by sources such as lightning,
high-intensity radiated fields (HIRF) associated with radar
and radio frequency (RF) transmitters, personal electronic
devices carried onto the aircraft by passengers,
electromagnetic interference and incompatibilities of
onboard equipment, onboard or ground-based terrorists
using RF weapons, and erroneous ground-based or
airborne military activities in which tracking radars lock
onto a commercial transport.

The failure phenomena associated with
electromagnetically induced transient signals that
ultimately affect performance and reliability of a digital
system are collectively known as digital system upset.
The occurrence of digital system upset in critical flight
systems can cause catastrophic deviations from the flight
path of the aircraft that compromise safe flight [1].  Upset
phenomena [2] can interfere with normal operation of the
processors within a control computer and result in
degraded performance and reliability at the closed-loop

system level.  Since there are numerous error modes that can
occur in a digital controller, it is impractical to determine and
model each of the failure modes and then design a
corresponding detector.  The most practical strategy is to
model the nominal function of the controller and detect when
it is not performing nominally.

One attribute that defines the functional integrity of
the control computer is the correctness of the control law
calculation.  A strategy has been developed for detecting
control law calculation errors in critical control computers
during laboratory validation testing.  The detection strategy
involves the use of a Kalman filter to predict the correct
control command, and a statistical decision rule to determine
if the computer's command calculation is correct.  Design of
the Kalman filter requires that the control law calculation be
modeled as a linear stochastic state equation.

A model-based monitoring scheme has been chosen
for the formulation of the design problem because it is
desired to have the capability of analytically determining the
performance of the detector.  The model developed must
depict the dynamic variation in the control commands that
occur over the flight condition of interest, the stochastic
variation that occurs when the aircraft is subjected to
atmospheric disturbances and when the measurements are
noisy, and the uncertainty associated with the tracking of the
aircraft for each flight.  Previous work on detecting computer
upset includes a processor-level scheme [3], as well as a
systems-level scheme [4, 5].  The monitor presented in [4, 5]
is based on linear state space models and was demonstrated
on the longitudinal control laws of a simulated B737
Autoland control computer.  The work in this paper uses an
improved simulator, models three control laws, and validates
the estimation process by checking the model on fifty
simulations.  This paper presents the modeling and estimation
required to generate the nominal control commands necessary
for the proper functioning of the malfunction detector.  This
problem is motivated by the need for having a detection
scheme for application to a laboratory set-up for testing an N-
redundant fault tolerant control computer.  This paper
addresses the modeling of the control command and the
design of a Kalman filter for state estimation.  This process
will be demonstrated for the elevator, throttle, and aileron
control laws of a Boeing 737(B737) Autoland control system
for landing the aircraft in light clear air turbulence.  The flight
data to be used in this work is generated by a B737 Autoland



simulator.  The formulation for the problem is presented
in Section 2, the modeling and Kalman filter design
strategies are presented in Section 3, and examples of the
strategies as applied to simulated data are presented in
Section 4.

2.  Problem Formulation

The objective of the laboratory set-up is to
determine the susceptibility of the fault tolerant controller
to upset caused by high-intensity radiated fields (HIRF).
The primary elements in the laboratory test set-up are: the
fault tolerant controller, the simulation of the aircraft,
engines, sensors, and actuators, the  HIRF test chamber,
and the control law calculation malfunction detector.
Malfunctions in control law calculations result when the
basic mathematical operations of the processor are
performed incorrectly.  The controller is interfaced to a
simulation of the aircraft, engines, sensors, and actuators
in order to assure the operating environment of the
controller during testing.  The controller with N
processors is placed inside the HIRF test chamber and
subjected to disturbances that could occur from radars or
high-power radio transmitters.  The controller is
monitored by the upset detector during testing to
determine if any of the disturbances causes a controller
upset.  Electrical isolation of electromagnetic disturbances
inside the HIRF test chamber is achieved using fiber
optics.  The processors in the redundant controller are
typically asynchronous or loosely synchronized.  The
sensor signals that are input to each processor are
generated by the plant simulation.  It is assumed that each
processor calculates all control laws, and that the control
laws of each processor are identical and are implemented
with the same software.  Therefore, one set of models for
the control law calculations will be developed.  This set of
models will be applicable to each processor.

The strategy which has been developed for detecting
control law calculation errors in a critical control computer
on-line during EME testing is shown in Figure 1.  The system
parameters must first be calculated.  The Kalman filter is then
designed to generate an on-line prediction of the correct
system-level calculation.  Use of the Kalman filter allows the
detector to be designed independently of the equations, logic,
and software implementation in the control computer.  It is
the function of the upset detector to determine whether or not
the control law calculation is correct.  The detector calculates
the difference between the predicted command from the filter
and the control law command from the control computer
under test, and uses a statistical decision rule to determine the
significance of the difference.  It then makes a determination
as to whether or not the control command calculation is
correct.

This paper considers the Model Generator and
Kalman Filter blocks in Figure 1.  The Upset Detector is
discussed in detail in [2].  The design of the Kalman filters
[6] requires that the control law calculation of the control
computer be modeled as a discrete state equation.  The
assumed model is of multi-input/single output form [4], and
is given by:

x(k + 1) = F(k)x(k) + G(k)u(k) + W(k)w(k) (1)

z(k) = H(k)x(k) + v(k) (2)

where: x(k) = control law calculation
F(k) = state transition matrix
u(k) = input vector to control computer
G(k) = input matrix
w(k) = process noise
W(k) = process noise scaling matrix
z(k) = measurement of control law calculation
H(k) = measurement matrix
v(k) = measurement noise
k = number of the time step or frame

In this paper, bold variables indicate vectors or matrices, and
the superscript T represents matrix transpose.  One time step
corresponds to one data frame of the controller in which all
control laws are calculated.  The measurement matrix H(k) is
one-dimensional and will be unity since the control law
calculation is defined as the state variable and can therefore
be measured directly.  The process noise and measurement
noise sequences are assumed to be independent, zero-mean
Gaussian, and white.  The deterministic quantities that must
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Figure 1.  Strategy for monitoring calculations
in critical control computers.



be evaluated for the Kalman filter design are the state
transition matrix F(k) and the input matrix G(k).  The
stochastic quantities that must be determined for the
Kalman filter design are the process noise scaling matrix
W (k), the process noise covariance Q(k), and the
measurement noise covariance R(k).  Since the control
law calculation in the flight control  computer is not
implemented in the form of equations (1) and (2),
obtaining the parameter matrices associated with the state
model results in a parameter identification problem.

Parameter identification methods and algorithms
have been widely available in the literature for many
years.  In this paper a least-squares regression will be
used to yield a good approximation to the correct control
law calculation.  The  deterministic quantities of the
model, namely state transition matrix F(k) and input
matrix G (k), are obtained using the least-squares
estimation.  More sophisticated parameter identification
methods may be employed in future work as necessary to
improve performance of the detector.

Section 3 presents the method used to generate
system parameters of the  model that are required in the
Kalman filter.  Section 4 contains examples of modeling
and estimation strategies using these methods for the
elevator, throttle, and aileron commands of a B737
Autoland control system simulation.  Since the control
laws are decoupled in the B737 Autoland, it is assumed
that these commands can be modeled separately.

3.  Modeling and Kalman Filter Design

A design strategy that uses least-squares
regression to generate model parameters for the design of
Kalman filters is shown in this section.  The initial state
equation is modeled in continuous time and then
discretized to reflect the command cycle time of the
control computer under test.  Evaluation of alternative
control computers could, therefore, be accomplished by
discretizing the continuous-time calculation models to
reflect the corresponding command cycle times.  For
simplicity, it is assumed that the model is time-invariant
over an interval of interest.  The general form of the
continuous-time deterministic time-invariant model
assumed for the control law calculation of the control
computer over the interval of interest is:

(t)Ax(t)(t)x Bu+=& (3)

where:

    x(t) = control command for continuous-time model
   =(t)x& time derivative of the control command   
    u(t) = input vector to the computer

    A = system matrix
    B = input matrix for continuous-time model

Data values for the control command and input vector are
obtained from a B737 computer simulation.  The parameters
A and B can be determined using the least-squares estimation
[7], which is given by:

q  =  (X T X) -1 X T Y       (4)
 where:

Y  = )(tx&
X = [x(t)  u(t)]

The vector X is the regression vector, and q is the parameter
vector that contains the model parameter A as its first element
and B  as the vector of remaining elements.  The discrete
model is obtained from the continuous model using a
sampling time that corresponds to the time increment
between data points, associated with the command cycle of
the control computer.  The form of the discrete model is:

(k)Fx(k)1)x(k Gu+=+    (5)

where: x(k)  is the control command for the discrete-time
model and u(k) is the corresponding input vector.

Once the deterministic elements, F and G, a r e
determined, the Kalman filter can be designed for estimating
the command generated by the critical control computer.  The
stochastic elements of the Kalman filter equations are
determined using modeling error information.  The modeling
error is calculated to be the difference between the command
specified by the model in equation 5 and the actual command
generated by the simulation at each frame.

4.  Example:  Design for B737 Autoland Control
Laws

A B737 SIMULINK  Autoland Simulator was used
to generate the data used in these examples.  Each simulation
run consisted of the landing of the aircraft in light clear air
turbulence (wind gust intensities of two feet/second) [4].
Each landing has the same initial conditions, with a wind
velocity of  twenty knots from a 45 degree NE direction.
Plots of the control commands from a single simulation run
are shown in Figures 2-4.  The irregularity in the command
plots is caused by compensation for the clear air turbulence to
which the aircraft is subjected.  For a given simulation run,
data was saved every frame during the landing from
glideslope engaged until flare.  For each of the three control
laws (elevator, throttle, and aileron), the data saved at each



frame for a single run consists of the control command
value in degrees, and the values of the inputs to the
calculation of that control command.  The inputs to each
of the control command calculations are listed in Table 1.
Data for each of the three control laws was saved for fifty
different simulation runs.  Since the algorithms and
methods used to create a mathematical model and design
a Kalman filter are identical for each of the control laws,
the generic process used is described here, and the results
for each of the control laws are shown separately below.

The data from the first run was arbitrarily used to
calculate the model parameters.  Using the least-squares
regression given by equation 4 on the entire data set for
the first run, F and G  values were determined.  The
sampling time for the discrete models was 50 ms to agree
with the data frame rate of the simulation which generated
the data.  In the case of all three control laws, the least-
squares regression applied to the complete data set from
glideslope to flare did not yield a single acceptable model
that accurately generated the command as calculated by
the simulator.  Thus for each control command, the entire
block of data was divided into sub-blocks, and a separate
set of model parameters was calculated for each sub-
block, the result being a set of sub-models for each
control command.  From this point on in the discussion, it
is understood that for each control law, there is actually a
set of sub-models, and a separate value for the system
parameters, F and G,  for each sub-model.

The model command then was calculated for
each frame of every run.  The model command is the
control command calculated according to equation 5,
using the calculated model parameters and the simulator
input values.  The model error, which is the difference
between the control command generated by the simulator
and the model command, was then calculated.  For each
run, the variance of the model error was calculated.  For
the design of the Kalman filter, the covariance of the
process noise Q was set equal to the mean of the model
error variance over the fifty runs.  Since it is assumed that
the measurement error will be small, the measurement
noise covariance R was set equal to Qx10-4. Note that
there is a distinct Q and R calculated for each sub-model.
The value for W  was set equal to one in all cases.  The
initial state for the Kalman filter was set to the trim value
for the control command, and the initial covariance was
set equal to one.  The throttle generated six sub-models;
the sub-model parameters, F and G, and process noise
covariance, Q, for the throttle are shown in Tables 2 and
3, respectively.

Next a Kalman filter was applied to the data in
each of the fifty runs in order to estimate the control
command value.  The estimation error was calculated for
each frame for each run as the difference between the
value estimated by the filter and the control command
value generated by the simulator.  Next the mean and
variance of the estimation error were calculated for each
of the fifty runs; the fifty points representing those values

are shown in Figures 5-7.  Each scatter plot contains one
point represented by a triangle rather than an asterisk.  That
point is considered to be a  worst  case run because it
contained either the largest mean or the largest variance for
the estimation error.  Plots of the estimation error over
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Figure 2.  Elevator Command for One Simulation
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Figure 3.  Throttle Command for One Simulation
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Figure 4.  Aileron Command for One Simulation

all frames for the specified worst case runs are shown in
Figures 8-10, respectively.  The maximum absolute mean,
variance, and absolute estimation error for each control
command over all fifty runs are shown in Table 4.

Table 1.  Inputs to Control Command Calculations

Elevator Throttle
ground speed engine pressure ratio
rate of climb/descent calibrated airspeed(Cas)
vertical acceleration true airspeed
pitch rate ground acceleration
scaled glide slope error roll angle
wheel height above ground Aileron
roll angle roll error signal
Cas variable gain roll rate

aileron cross feed yaw
Cas variable gain

Table 2.  Throttle System Parameters

F G
0.9995  0.0473  0.0515 -0.0509 -0.0733  0.0026
0.9345  2.5668 -0.0561  0.0404 -0.0891  0.0011
0.9657 -1.2461 -0.1234  0.1379 -0.1031 -0.0874
0.9537  1.7381 -0.0477  0.0370 -0.0637 -0.0066
0.9884  0.7779  0.0234 -0.0289 -0.0572  0.0028
0.9718  1.4090  0.0055 -0.0149 -0.0661  0.0014

Table 3.  Throttle Process Noise Covariance

Q
3.3650 0.5538 3.2231 1.0995 0.4320 0.1330

Table 4.  Estimation Error Over Fifty Runs

Command Maximum
| Mean |

Maximum
Variance

Maximum
| Maximum |

Elevator .00037 .000107 .37466
Throttle .00034 .000097 .07634
Aileron .00042 .000095 .19810
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Figure 5.  Elevator: Mean and Variance of Estimation
Error
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Figure 6.  Throttle: Mean and Variance of Estimation
Error
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Figure 7.  Aileron: Mean and Variance of Estimation
Error
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Figure 8.  Elevator: Worst Case Estimation Error
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Figure 9.  Throttle: Worst Case Estimation Error
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Figure 10.  Aileron: Worst Case Estimation Error

5.  Conclusions and Future Work

A very simple method for modeling and Kalman
filter design has been developed to estimate correct control
law calculations in a flight control computer.  The estimates
are for use in detecting control law calculation errors during
tests when the computer is subjected to disturbances caused
by electromagnetic fields.  The modeling method involves the
use of least-squares estimation to obtain model parameters for
the control command.  Modeling errors are corrected in the
Kalman filter estimates by representing the modeling error as
process noise in the filter design.  The method was
demonstrated by developing models and Kalman filter
designs for the elevator, throttle, and aileron control laws of a
B737 Autoland control system for the light clear air
turbulence case.  The one-step-ahead Kalman filter
predictions of the elevator, throtte, and aileron commands
yielded worst case estimation errors as shown in Table 4.
Future plans include the refinement and revision of the
modeling and state estimation techniques based partly on the
results of tests of the detection monitor which makes use of
the models and Kalman filters generated using the methods
described above.  It is anticipated that this strategy may be
applied to the cases of medium and heavy clear air
turbulence, and also to data generated by an actual flight
control computer.
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